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ABSTRACT

Disparity estimation is a very important operation in stereo image and video compression. However, existing
disparity estimation algorithms require too large computation power. In this paper, we propose a fast disparity
estimation algorithm for mesh-based stereo image and video compression with two-stage hybrid approach, which
is names as Two Stage Iterative Block and Octagonal Matching algorithm (TS-IBOM). The first stage of this
algorithm is Iterative Block Matching algorithm, which can give a good initial guess of the disparity vectors
with a little computation. In the second stage, Iterative Octagonal Matching algorithm is employed to refine the
disparity vectors. A local updating scheme is also proposed to further accelerate the process by skipping nodes
whose disparity vectors have been derived already. Experimental results show that the proposed algorithm can
give good results and is 18 times faster than Octagonal Matching. This algorithm is suitable to be employed in
mesh-based stereo image and video compression systems.

Keywords: Disparity estimation, TS-IBOM, Two Stage Iterative Block and Octagonal Matching algorithm,
Octagonal Matching, stereo image and video compression.

1. INTRODUCTION

Stereo image and video make people to sense three-dimensional perception by showing two images or frames
captured with two cameras to each eye simultaneously. Compared with traditional mono-view video, stereo video
can give users more vivid perception and can be used for 3D-TV, telepresense, and immersive communication.
In stereoscopic image and video systems, disparity estimation, which can find the correspondences between the
stereo pairs, is the key operation. It can give the information for inter-view prediction in compression systems.
Furthermore, with the information of camera configurations and the disparity vectors, the three-dimensional
models can be reconstructed.

Many disparity estimation algorithms have been proposed, such as feature based algorithms, block-matching,
pel-recursive, optical flow, and Bayesian approach.1 The adaptive window stereo matching algorithm2 can be
viewed as one of the block-matching based approach. The block size is adjusted according to the intensity and
disparity variation of the two frames. It is only suitable for objects which are far from the cameras because of
the frontoparallel plane assumption. Dynamic program3 is another popular approach. It searches the matching
pairs along the two corresponding epipolar lines of the two images. The computation of this kind of algorithms
are large.

All the disparity estimation algorithms above are designed to derive dense disparity field. However, for video
and image compression systems, coarse field are preferred since the large amount information of dense disparity
field dramatically reduce the coding efficiency. Block-based coarse motion field is used for traditional video
compression systems; however, it cannot be used for stereo image pairs compression since the frontoparallel
plane model no longer establishes.
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On the other hand, mesh-based video coding is a new technique for motion estimation and compensation.4

The advantage of mesh-based processing is that it can always provide better performance for both spatial and
temporal interpolation. Therefore, it has been found being more effective to be used for inter-view prediction
since it can provide a coarse representation of the disparity field with adequate models degenerated from three-
dimensional mesh.5

For mesh-based disparity estimation and compensation, Hexagonal Matching algorithm (or Octagonal Match-
ing for rectangular patches)6 can give near-optimal solutions and is widely used. Although it can provide good
performance, the computation intensity is enormous. A fast algorithm is proposed by Wangs with gradient-
descent technique5; however, it is easy to be trapped in local minimum, and the computation intensity is still
too large. Consequently, a fast algorithm is required for mesh-based disparity estimation for a stereo image and
video compression system.

In this paper, we propose a novel fast disparity estimation algorithm with two-stage hybrid approach named
as Two Stage Iterative Block and Octagonal Matching (TS-IBOM) algorithm. In the first stage, Iterative Block
Matching algorithm can give a good initial value of the disparity vector of each node. Next, in the second stage,
Iterative Octagonal Matching algorithm is applied to refine the disparity vectors. Furthermore, a local updating
scheme is also proposed to further accelerate the process.

This paper is organized as follows. In Section 2, the concepts of disparity estimation for mesh-based disparity
compensation are introduced. Then the proposed algorithm is described in Section 3, and the experimental
results are shown in Section 4. Finally, Section 5 concludes this paper.

2. DISPARITY ESTIMATION FOR MESH-BASED DISPARITY COMPENSATION

In this section, the concepts and models of mesh-based disparity compensation are first introduced in Section
2.1. Next, in Section 2.2, the constraints of disparity vectors are described. The classical disparity estimation
algorithm, Octagonal Matching algorithm, is then introduced in Section 2.3. It will be an important benchmark
algorithm in this paper.

2.1. Mesh-Based Disparity Compensation

The model of mesh-based disparity compensation can be shown as Fig. 1. A physical object can always be
represented with three-dimensional mesh models, that is, the surfaces of the object are modeled as several
continuous small patches, where each patch is a small plane. The three-dimensional mesh models are projected
to the image plane to form two-dimensional mesh. When two cameras are considered, there are two image planes,
and the meshes projected on the left image plane and the right image plane are illustrated in Fig. 1. Since each
patch is a small plane, the two coordinates corresponding to the same physical object can be transformed to
each other with perspective or affine transform. For example, if the projected coordinate of the left eye of the
man is Pl in the left image plane and is Pr in the right image plane. We can always find an affine transform W ,
with which Pr = W (Pl) and Pl = W−1(Pr).

There are several assumptions for the two-dimensional mesh model. First, there is no disparity discontinuity,
that is, the surface of the object is continuous. Second, no occlusion occurs. With these two assumptions, the
two-dimensional mesh model can provide the same performance as that of the three-dimensional mesh model.

There are two kinds of two-dimensional mesh: regular mesh and arbitrary mesh.4 With arbitrary mesh,
the delicate surface structure can be represented with small patches, and the smooth surface can be represented
with large patches. Therefore, the performance of arbitrary mesh is better. But it is not suitable to be used
in a compression system since the positions of the nodes should also be transmitted to the decoder, which
introduces large bit-rate overhead. Moreover, the geometry of the mesh should be reconstructed with Delaunay
triangulation operation in the decoder, which introduces large computation power overhead. Consequently,
regular mesh, where all the surfaces are modeled with rectangular patches in the same size, is more suitable for
compression systems and is considered in this paper since only few parameters are required to represented the
geometry of the mesh.

The concept of mesh-based disparity compensation is shown in Fig. 2, where the one image of the stereo
pair is reconstructed (compensated) with the other image by warping the two-dimensional mesh. In this paper,
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Figure 1. Projection a three-dimensional mesh to two-dimensional mesh.
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Figure 2. Illustration of mesh-based disparity compensation.

the left frame is used as the reference frame to predict the right frame. Because regular mesh is employed here,
the right frame (current frame) is divided into blocks, and nodal nodes are placed at the four corners of these
blocks. The texture of left frame is warped to the right frames according to the positions of the nodal nodes by
use of the following equations:

for every pixel P = (x, y) in the right frame,

I ′r(P) = Il(W−1(P)), (1)

W−1(P) =
∑

i∈N(P)

φi(P)Di +P, (2)

where Ir(P) is the right frame, Il(P) is the right frame, I ′r(P) is the prediction frame for the right frame from
the left frame, W (.) is the warping function, φi is the weighting function, Di is the disparity vector of node n,
and N(P) is the set of neighboring nodal nodes of the pixel P. For example, N(P) = {n−w, n−w+1, n, n+1}
in Fig. 2, where w is the number of horizontal nodal nodes. Note that bi-linear interpolation technique is applied
here instead of affine transform because of its better performance.5

2.2. Constraints of Disparity Vectors

The disparity vectors should meet two kinds of constraints: epipolar constraint and ordering constraint.7 To
meet the epipolar constraint, the corresponding pixels in a stereo pair always lie on the respective epipolar
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lines. For a parallel camera configuration, namely, the two cameras are set in parallel, the epipolar lines are all
horizontal. Only disparity vectors in x-direction should be considered, and the y component of the vectors are
all zero. This property can dramatically simplify the computation; therefore, in this paper, we only consider
parallel camera configuration. For stereo pairs captured with other camera configurations, the epipolar geometry
should be first derived, and the images can be calibrated to parallel camera configuration.8

The second constraint is the ordering constraint, which can be expressed as the following equation.

If Pi < Pj ⇒ W−1(Pi) < W−1(Pj). (3)

This constraint imply that the mesh should not cross to each other.

2.3. Disparity Estimation with Octagonal Matching

Octagonal Matching6 is a classical approach to derive motion vectors for mesh-based systems. It can give a
near-optimal solution and is widely used. The disparity vectors of the nodal nodes are derived iteratively. In
each iteration, the disparity vectors are decided in raster scan manner. For each node n,

Dn = argmin
Dn

∑

P∈NB(n)

|Ir(P)− I ′r(P)|, (4)

where

xn−1 +Dn−1 ≤ xn +Dn ≤ xn+1 +Dn+1, (5)

NB(n) is the neighboring four blocks of node n, which are shown by gray color in Fig. 3, and xn is the x
component of the position of node n. To find the disparity vector, the iterative full-search strategy is employed
to find the corresponding position W−1(Pn) of the nodal node Pn. Only the disparity vector of one node is
considered at one time, where the other disparity vectors are fixed. For each candidate disparity vector in the
range derived from (5),

xn−1 − xn +Dn−1 ≤ Dn ≤ xn+1 − xn +Dn+1, (6)

the four transforms of the four blocks in NB(n) are calculated and the texture of NB(n) in the left image is
warped to the right image as shown with the gray regions in Fig. 3, and the sum of absolute difference between
the warped texture and the original texture is calculated. After all the sum of absolute difference values of all
the candidates are calculated, the candidate with the minimum value is the disparity vector Dn of this node n,
as shown in (4). Next, the disparity vector Dn+1 is calculated. After all the disparity vectors are derived, the
next iteration starts, where the same process is applied from the first node to the last node. This procedure is
applied iteratively until no change of disparity vectors occur. Note that for parallel camera configuration, the
vector Dn is degenerated to scalar Dn, which is the x component of the disparity vector. Equation (5) is just
the ordering constraint for the object surface continuity assumption of mesh.

Although Octagonal Matching can provide good performance, the computation intensity is enormous because
of the full search strategy. A fast algorithm is proposed by Wangs5 with gradient-descent approach; however, it
is easy to be trapped in local minimum, and the computation intensity is still too large.

3. PROPOSED ALGORITHM

In this section, we propose a new fast algorithm for mesh-based disparity estimation named as Two Stage Iterative
Block and Octagonal Matching (TS-IBOM) algorithm. This algorithm contains two stages. The first stage is
Iterative Block Matching algorithm, which can derive good initial values of disparity vectors quickly. Next, in
the second stage, the Iterative Octagonal Matching algorithm can further refine the disparity vectors. The local
updating and shape-adaptive schemes are also proposed to further accelerate the process.
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Figure 3. Illustration of Octagonal Matching algorithm.
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Figure 4. Illustration of Iterative Block Matching algorithm.

3.1. Stage One: Iterative Block Matching Algorithm.
In the first stage, Iterative Block Matching algorithm is proposed. In each iteration, for each node n, we fixed
the disparity vectors of the other nodes. The disparity vector can be found with the following equation:

Dn = argmin
Dn

∑

P∈NB′(n)

|Ir(P)− Il(P+Dn)|, (7)

where NB′(n) is a block centered at the node n in the right image, as shown in Fig. 4, Dn is a disparity vector
with x component is Dn and y component is 0, and the candidates of disparity vectors are also the same as (6).
The same procedure is repeated iteratively until the disparity vectors converge. Since no warping operations are
involved in the procedure, block matching algorithm is much faster than Octagonal Matching. On the other hand,
the performance is better than the traditional block matching algorithm because the search range is unlimited
and the ordering constraint can be maintained as well with the iterative approach. Therefore, the first stage can
derive a good initial guess for the disparity vectors with a little computation; however, it may be failed in some
portions whose disparity vector field are not smooth, such as the boundaries and the noses of the objects, which
is due to the model mismatch between block matching and stereo video.

3.2. Stage Two: Iterative Octagonal Matching algorithm
In the second stage, the Iterative Octagonal Matching algorithm, which is similar to the one-step search algo-
rithm,9 is employed to refine the disparity vectors. For every node in each iteration,

Dn = argmin
Dn

∑

P∈NB(n)
(Dn mod 2m)=0

|Ir(P) − I ′r(P)|, (8)

where m is set to 2 in the first iteration, set to 1 in the second iteration, and set to 0 in the following iterations.
Similarly, the procedure stops after the disparity vectors converge. The main concept of this algorithm is
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Figure 5. Nodal nodes whose disparity vectors are required to be further refined after five iterations in stage one.

described as follows. The computation of OctagonalMatching algorithm in the first several iterations is redundant
since the derived disparity vectors are invalid when the disparity vectors of the neighbored nodal nodes are
uncertain. Compared with Octagonal Matching, the proposed algorithm is a coarse-to-fine approach, where a
coarse results can be found in the first two iterations, and the fine results can be derived in the last several
iterations. The redundant computation of the first several iterations are removed with coarse search strategy.
On the other hand, the accuracy of Octagonal Matching is still maintained with the fine search strategy in the
last several iterations. Consequently, the Iterative Octagonal Matching algorithm can perform as well as the
Octagonal Matching algorithm with fewer computation power.

3.3. Local Updating and Shape-Adaptive Scheme

In the experiments, we found that after several iterations, most of the disparity vectors are derived, and only a
few nodes need to be refined. To further accelerate the process, we also propose a local updating scheme, where
disparity estimation is only applied on the nodes within regions having large prediction error. For every node in
each iteration, the difference of the disparity compensated frame and the right image of the four blocks connected
to the current node is evaluated. If the difference is less than a threshold, the current node will not need to
be processed in the next iteration and can be skipped. This scheme can accelerate the process with negligible
quality degradation. An example is shown in Fig. 5. After five iterations in stage one, the nodal nodes which
need to be refined are marked. It shows that only the nodes near the nose and the boundaries are marked. The
disparity vectors of these nodes are then further refined with Iterative Octagonal Matching algorithm.

On the other hand, the assumptions of mesh-based disparity compensation imply the disparity estimation
algorithm should be applied on each video object separately, that is, a video object segmentation algorithm10

may be required as a pre-processing. If the video object masks are available, a shape-adaptive scheme can skip
nodal nodes which do not belong to the video object.

4. EXPERIMENTAL RESULTS

The test platform is a PC with a Pentium-4 1.6 GHz processor. The standard stereo test sequence Anne, whose
size is 720x288, is taken as an example in Fig. 6. The block size is 16x16. Figure 6(a) is the left frame, and Fig.
6(b) is the right frame. The target of the proposed algorithm is to generate a good prediction frame for Fig. 6(b)
only from the information of Fig. 6(a). After the first stage, the result is shown in Fig. 6(c). It is obvious that
the disparity vectors of the nodes near the boundaries are not correct. After the process of the second stage,
the result is shown in Fig. 6(d), which is very similar to Fig. 6(b). It is shown that with mesh-based disparity
compensation and the proposed disparity estimation algorithm, the left frame can give good prediction for the
right frame, which is very valuable in a stereo coding system. The corresponding two-dimensional meshes are
shown in Fig. 6(e) and Fig. 6(f). Note that the regular mesh is employed here, which is shown in Fig. 6(f).

Similar results can be found in Fig. 7, where the other sequence Man sizing in 386x193 is tested. After the
process of the first stage, the compensated frame is shown in Fig. 7(c), where the compensated regions near the
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Figure 6. (a) Origin left frame of Anne #001. (b) Origin right frame of Anne #001. (c) Warped frame after the first
stage. (d) Warped frame after the second stage. (e) The corresponding mesh of the left frame. (f) The regular mesh of
the right frame.

nose and the boundaries of the face are not correct. After the second stage, the result is shown in Fig. 7(d). It
is very similar to Fig. 7(b).

The subjective comparison of each iteration of Octagonal Matching, TS-IBOM, and TS-IBOM with local
updating scheme (TS-IBOM+LU) is shown in Fig 8. It shows the disparity vectors of the proposed algorithms
converge more quickly than those of Octagonal Matching. The final results of TS-IBOM are very similar to that
of Octagonal Matching with less computation power. Therefore, it is more effective than Octagonal Matching.
Compared TS-IBOM with TS-IBOM+LU, it shows that the performance of these two algorithms are similar. It
is proven that the local updating scheme can further accelerate the disparity estimation process with negligible
quality degradation. The objective comparison is shown in Fig. 9, where only the foreground object is considered,
and similar results can be found. Octagonal Matching can achieve 30.51 dB in PSNR with nine iterations, TS-
IBOM can achieve 30.10 dB with seven iterations, and TS-IBOM+LU can achieve 28.65 dB with seven iterations,
too. Note that, although the PSNR is 1.86 dB lower than that of Octagonal Matching, the subjective quality is
almost the same, as shown in Fig. 8.

The PSNR-Runtime chart is shown in Fig. 10. To achieve similar subjective quality, the runtime of Octagonal
Matching, TS-IBOM and TS-IBOM+LU are 45,460 ms, 8,230 ms, and 2,420 ms. It shows that TS-IBOM is
5.52 times faster than octagonal, and TS-IBOM+LU is 18.79 faster. Note that the gradient-descent based fast
algorithm5 is only twelve times faster. Figure 10 also shows that the proposed two algorithms can achieve high
PSNR with only short runtime, which are more effective than Octagonal Matching.
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Figure 7. (a) Origin left frame of Man #001. (b) Origin right frame of Man #001. (c) Warped frame after the first
stage. (d) Warped frame after the second stage.

5. CONCLUSION

In this paper, we propose a two-stage fast disparity estimation algorithm for mesh-based image and video
compression named as TS-IBOM. With Iterative Block Matching algorithm and Iterative Octagonal Matching
algorithm, the proposed algorithm can give good prediction frame with less computation. It can be further
accelerated with local updating scheme, by which 18 times speedup can be achieved compared with Octagonal
Matching.
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